Arturs Backurs

Sepideh Mahabadi

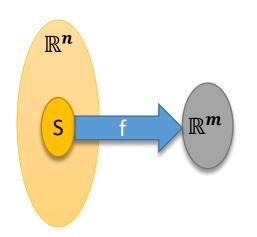
Konstantin Makarychev Northwestern University Yury Makarychev

### Plan

- 1. Background
  - Extension of functions
- 2. Our results
  - Two-sided Kirszbraun Theorem
- 3. Overview of the approach

#### Notation throughout the talk

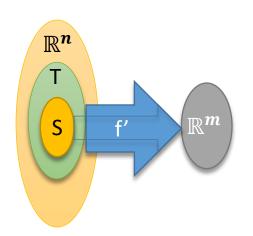
- We have a function  $f: S \to \mathbb{R}^n$
- Which is defined over a subset  $S \subset \mathbb{R}^m$



#### Notation throughout the talk

- We have a function  $f: S \to \mathbb{R}^n$
- Which is defined over a subset  $S \subset \mathbb{R}^m$

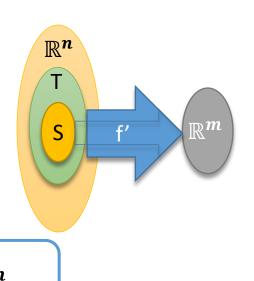
Extensions of the map *f* to a superset *T* of *S* 



#### Notation throughout the talk

- We have a function  $f: S \to \mathbb{R}^n$
- Which is defined over a subset  $S \subset \mathbb{R}^m$

Extensions of the map f to a superset  $S \subset T \subset \mathbb{R}^n$ 

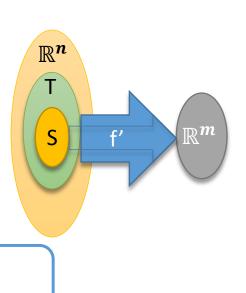


- $\Box$  Extension to the superset T, i.e.,  $f': T \to \mathbb{R}^m$  so that
  - f'(x) = f(x) for any  $x \in S$
  - Maintaining other properties ...

#### Notation throughout the talk

- We have a function  $f: S \to \mathbb{R}^n$
- Which is defined over a subset  $S \subset \mathbb{R}^m$

Extensions of the map f to a superset  $S \subset T \subset \mathbb{R}^n$ 



 $\Box$  Extension to the superset T, i.e.,  $f': T \to \mathbb{R}^m$  so that

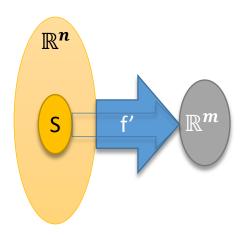
- f'(x) = f(x) for any  $x \in S$
- Maintaining other properties ...



#### Notation throughout the talk

- We have a function  $f: S \to \mathbb{R}^n$
- Which is defined over a subset  $S \subset \mathbb{R}^m$

Extensions of the map *f* to a superset *T* of *A* 



#### **Extension to the whole** $\mathbb{R}^n$ , i.e., $f': \mathbb{R}^n \to \mathbb{R}^m$ so that

- f'(x) = f(x) for any  $x \in A$
- Maintaining other properties ...



#### Lipschitz Extension

□ A map  $f: X \to Y$  is *L*-Lipschitz if for all  $x, x' \in X$ :

$$\|f(x) - f(x')\| \le L \cdot \|x - x'\|$$
 Euclidean

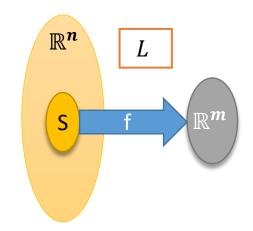
## Lipschitz Extension

□ A map  $f: X \to Y$  is *L*-Lipschitz if for all  $x, x' \in X$ :

 $\|f(x) - f(x')\| \le L \cdot \|x - x'\|$  Euclidean

**Lipschitz extension**:

**Given:** a *L*-Lipschitz map  $f: S \to \mathbb{R}^m$ , where  $S \subseteq \mathbb{R}^n$ 



# Lipschitz Extension

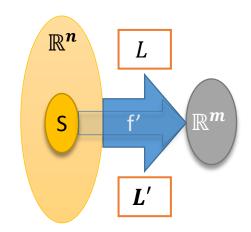
□ A map  $f: X \to Y$  is *L*-Lipschitz if for all  $x, x' \in X$ :

 $\|f(x) - f(x')\| \le L \cdot \|x - x'\|$  Euclidean

**Lipschitz extension:** 

**Given:** a *L*-Lipschitz map  $f: S \to \mathbb{R}^m$ , where  $S \subseteq \mathbb{R}^n$ **Goal:** a map  $f': \mathbb{R}^n \to \mathbb{R}^m$  s.t.

- f' is an extension of f
- *f*′ is *L*′-Lipschitz



# Kirszbraun Extension Theorem

□ A map  $f: X \to Y$  is *L***-Lipschitz** if for all  $x, x' \in X$ :

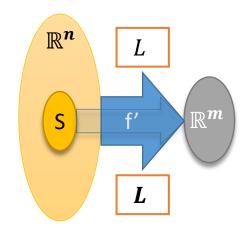
 $\|f(x) - f(x')\| \le L \cdot \|x - x'\|$  Euclidean

**Lipschitz extension:** 

**Given:** a *L*-Lipschitz map  $f: S \to \mathbb{R}^m$ , where  $S \subseteq \mathbb{R}^n$ **Goal:** a map  $f': \mathbb{R}^n \to \mathbb{R}^m$  s.t.

- *f*′ is an extension of *f*
- *f*′ is *L*′-Lipschitz

Kirszbraun extension theorem '34: for  $S \subset \mathbb{R}^n$ , every *L*-Lipschitz map  $f: S \to \mathbb{R}^m$  can be extended to the whole  $\mathbb{R}^n$  keeping the same Lipschitz constant, i.e., L' = L.



# Kirszbraun Extension Theorem

□ A map  $f: X \to Y$  is *L*-Lipschitz if for all  $x, x' \in X$ :

 $\|f(x) - f(x')\| \le L \cdot \|x\| \square A$ 

Lipschitz extension:

**Given:** a *L*-Lipschitz map f: S -**Goal:** a map  $f': \mathbb{R}^n \to \mathbb{R}^m$  s.t.

- f' is an extension of f
- *f'* is *L'*-Lipschitz

Applications

• Prioritized and Terminal Dimension reduction

 $\mathbb{R}^{n}$ 

L

 $_{\mathbb{D}}m$ 

- Clustering
- ...

Kirszbraun extension theorem '34: for  $S \subset \mathbb{R}^n$ , every *L*-Lipschitz map  $f: S \to \mathbb{R}^m$  can be extended to the whole  $\mathbb{R}^n$  keeping the same Lipschitz constant, i.e., L' = L.

□ Can we get any lower bound?

□ Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]
  - Initial map  $f: X \to Y$  is **D-bi-Lipschitz** or has **distortion D**, i.e., for some  $\lambda$  and all  $x, x' \in X$ :

$$\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$$

□ Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]
  - Initial map  $f: X \to Y$  is **D**-bi-Lipschitz or has distortion **D**, i.e., for some  $\lambda$  and all  $x, x' \in X$ :

$$\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$$

- f' will have distortion O(D)
- Using "extra coordinates"

□ Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]
  - Initial map  $f: X \to Y$  is **D**-bi-Lipschitz or has distortion **D**, i.e., for some  $\lambda$  and all  $x, x' \in X$ :

$$\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$$

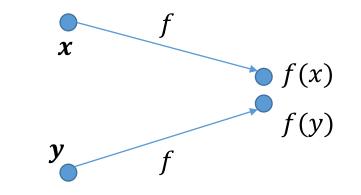
- f' will have distortion O(D)
- Using "extra coordinates"

> What if we have no such guarantee?

Decreasing distances is unavoidable

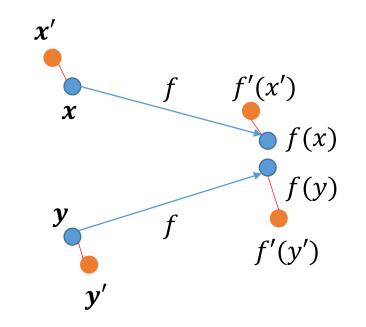
Decreasing distances is unavoidable

- $x, y \in S$
- ||f(x) f(y)|| is small



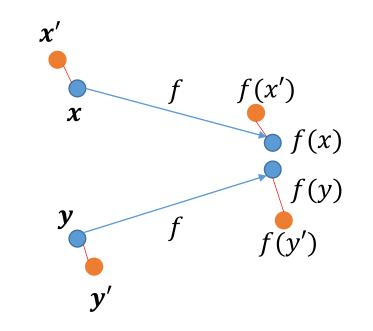
Decreasing distances is unavoidable

- $x, y \in S$
- ||f(x) f(y)|| is small
- $x' \in T$  is close to x, and  $y' \in T$  is close to y



Decreasing distances is unavoidable

- $x, y \in S$
- ||f(x) f(y)|| is small
- $x' \in T$  is close to x, and  $y' \in T$  is close to y



Question: Can we decrease distances between any pair of points as little as possible?

# Plan

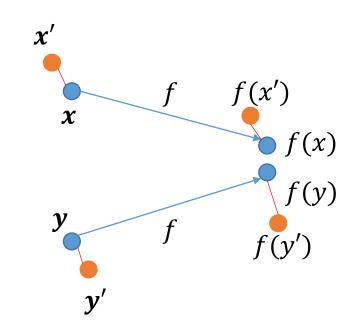
- 1. Background
  - Extension of functions
- 2. Our results
  - Two-sided Kirszbraun Theorem
- 3. Overview of the approach

#### Results in a nutshell

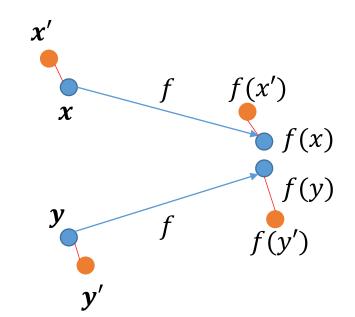
A "tight" variant of the Kirszbraun theorem:

It is possible to find an extension map f' such that the distance between any pair of points is not decreased by more than what is "necessary".

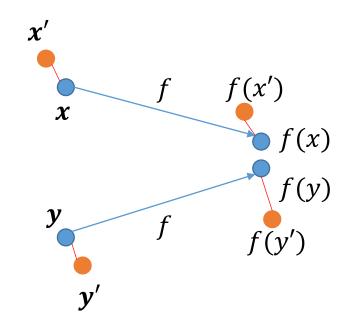
(L||x' - x|| + ||f(x) - f(y)|| + L||y - y'||)



 $\inf_{x,y\in S} (L\|x'-x\| + \|f(x) - f(y)\| + L\|y-y'\|)$ 

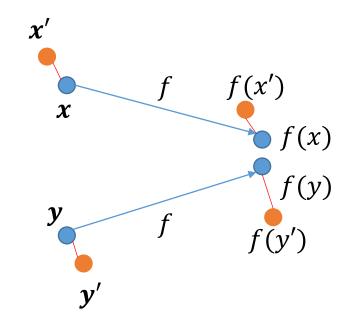


 $\min(L\|x'-y'\|, \inf_{x,y\in S}(L\|x'-x\|+\|f(x)-f(y)\|+L\|y-y'\|)$ 



• Define metric

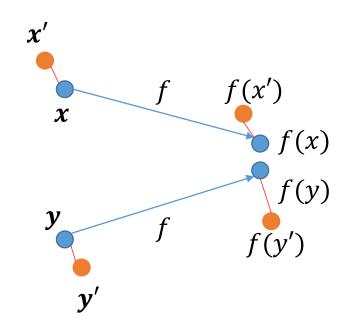
 $d_{ub}(x',y') = \min(L||x'-y'||, \inf_{x,y\in S}(L||x'-x|| + ||f(x) - f(y)|| + L||y-y'||)$ 



• Define metric

 $d_{ub}(x',y') = \min(L\|x'-y'\|, \inf_{x,y\in S}(L\|x'-x\|+\|f(x)-f(y)\|+L\|y-y'\|)$ 

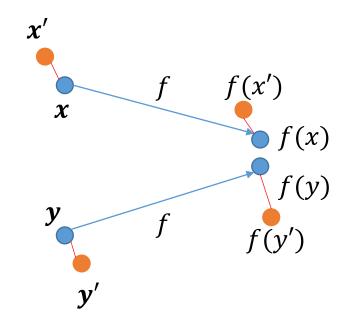
• *cL*-Lipschitz extension  $f': T \to \mathbb{R}^m$  has  $||f'(x') - f'(y')|| \le cd_{ub}(x', y')$ 



• Define metric

 $d_{ub}(x',y') = \min(L||x'-y'||, \inf_{x,y\in S}(L||x'-x|| + ||f(x) - f(y)|| + L||y-y'||)$ 

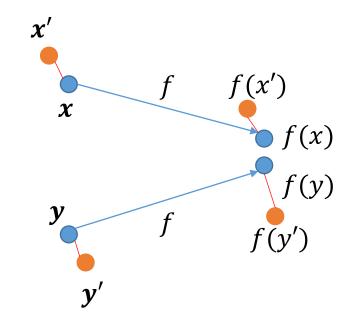
- *cL*-Lipschitz extension  $f': T \to \mathbb{R}^m$  has  $||f'(x') f'(y')|| \le cd_{ub}(x', y')$
- Can we find f' such that  $||f'(x') f'(y')|| \ge \Omega(d_{ub}(x', y'))$ ?



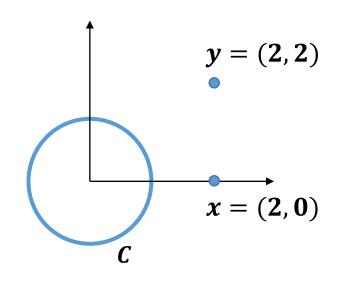
• Define metric

 $d_{ub}(x',y') = \min(L||x'-y'||, \inf_{x,y\in S}(L||x'-x|| + ||f(x) - f(y)|| + L||y-y'||)$ 

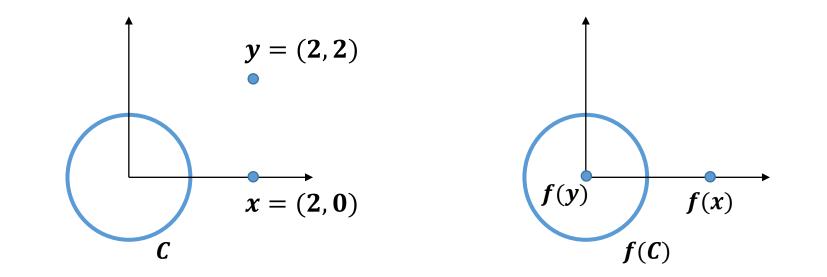
- *cL*-Lipschitz extension  $f': T \to \mathbb{R}^m$  has  $||f'(x') f'(y')|| \le cd_{ub}(x', y')$
- Can we find f' such that  $||f'(x') f'(y')|| \ge \Omega(d_{ub}(x', y'))$ ?
  - Short Answer: No
  - Long Answer: We need extra relaxations



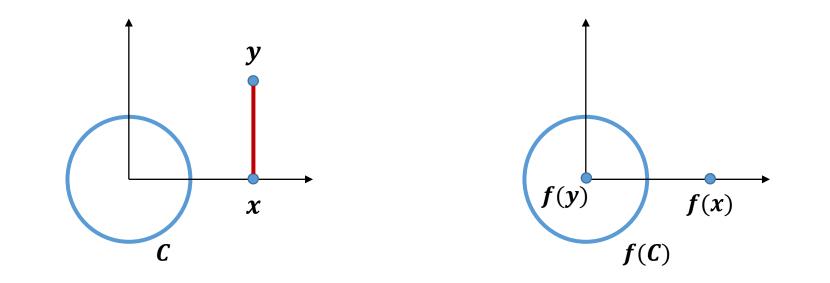
•  $S = C \cup \{x, y\}$ 



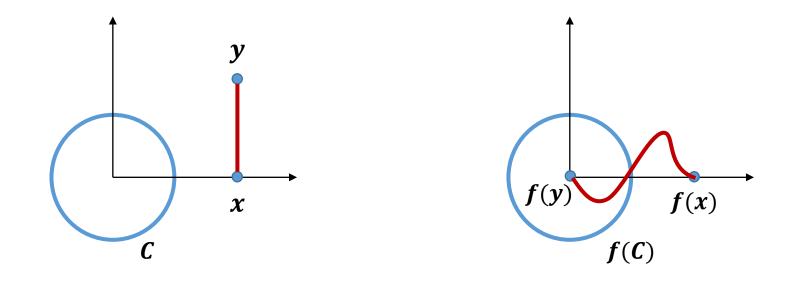
- $S = C \cup \{x, y\}$
- *f* is 1-Lipschitz



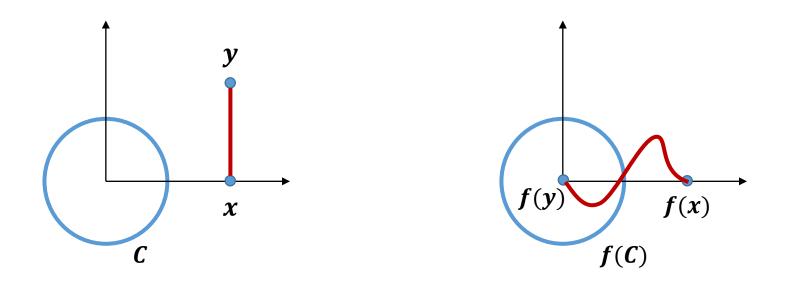
- $S = C \cup \{x, y\}, T = C \cup [x, y]$
- *f* is 1-Lipschitz



- $S = C \cup \{x, y\}, T = C \cup [x, y]$
- *f* is 1-Lipschitz
- $d_{ub} > 0$  for every pair of points  $u, v \in T$
- But the image of [x, y] intersects the circle, i.e., f'(u) f'(v) = 0



- $S = C \cup \{x, y\}, T = C \cup [x, y]$
- *f* is 1-Lipschitz
- $d_{ub} > 0$  for every pair of points  $u, v \in T$
- But the image of [x, y] intersects the circle, i.e., f'(u) f'(v) = 0, so it is not possible to get  $||f'(x') f'(y')|| \ge \Omega(d_{ub}(x', y'))$



### A bad example

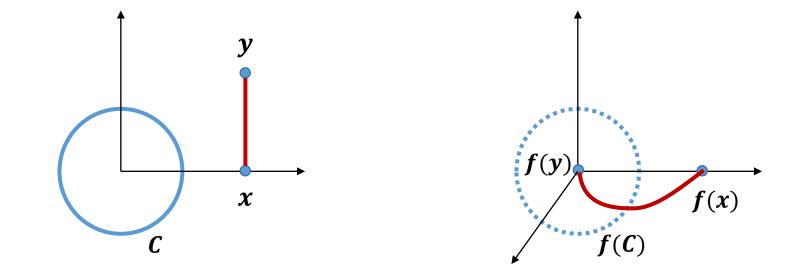
- $S = C \cup \{x, y\}, T = C \cup [x, y]$
- *f* is 1-Lipschitz
- $d_{ub} > 0$  for every pair of points  $u, v \in T$
- But the image of [x, y] intersects the circle, i.e., f'(u) f'(v) = 0, so it is not possible to get  $||f'(x') f'(y')|| \ge \Omega(d_{ub}(x', y'))$

>Outer extension



### Relaxation I: Outer Extension

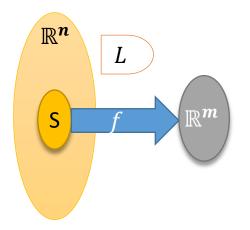
• Use additional coordinates in the image of the extended map



### Lipschitz Outer-Extension

**Given:** a map  $f: S \to \mathbb{R}^m$ , where

- $S \subseteq T \subset \mathbb{R}^n$
- f is L —Lipschitz



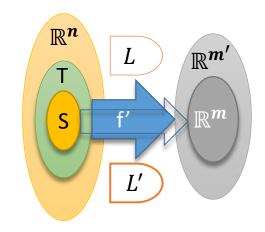
### Lipschitz Outer-Extension

**Given:** a map  $f: S \to \mathbb{R}^m$ , where

- $S \subseteq T \subset \mathbb{R}^n$
- f is L –Lipschitz

**Goal:** a map  $f': X \to \mathbb{R}^{m'}$ , where

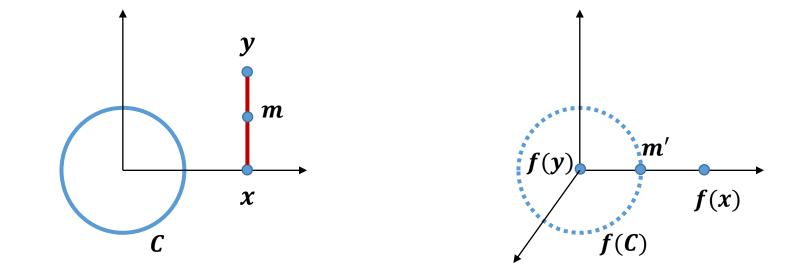
- m' > m
- f' is L' Lipschitz
- f' is an (outer)-extension of f: for every  $x \in S$   $f'(x) = f(x) \oplus (0, ..., 0)$ m' - m



### Relaxation II: increase the Lipschitz constant

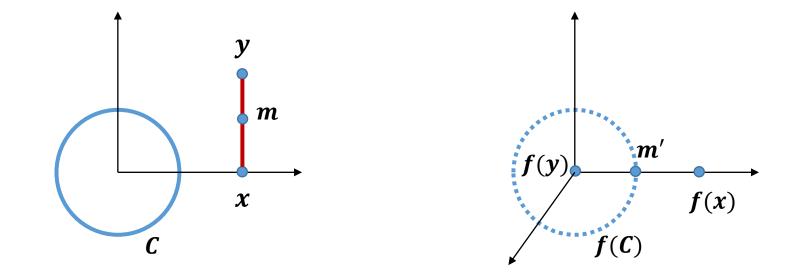
### Relaxation II: increase the Lipschitz constant

- If f' must have Lipschitz constant equal to 1, then m should be mapped to m'
  - the distances would decrease infinitely.



### Relaxation II: increase the Lipschitz constant

- If f' must have Lipschitz constant equal to 1, then m should be mapped to m'
  - the distances would decrease infinitely.
- > Instead find a  $(1 + \epsilon)L$ -extension f'



### Results: Two-sided Kirszbraun Theorem

Given:

- $f: S \to \mathbb{R}^m$  is L -Lipschitz
- $S \subset T \subset \mathbb{R}^n$

**Find:** the extended map  $f': T \to \mathbb{R}^m \bigoplus \mathbb{R}^\Delta \approx \mathbb{R}^{m'}$  such that

- f' is  $(1 + \epsilon)L$  –Lipschitz
- $||f'(x) f'(y)|| \ge c\sqrt{\epsilon}d_{ub}(x, y)$  for all  $x, y \in T$
- If  $|T \setminus S|$  is finite, then  $\Delta = O(\log |T \setminus S|)$ .
- Otherwise  $\Delta = \infty$

### Pros

# ► Least Possible contraction: for any pair simultaneously upto a factor of $O(\sqrt{\epsilon})$ , i.e., Bound $\frac{\|f'(x)-f'(y)\|}{d_{ub}(x,y)} \in [c\sqrt{\epsilon}, 1+\epsilon]$

### Pros

- ► Least Possible contraction: for any pair simultaneously upto a factor of  $O(\sqrt{\epsilon})$ , i.e., Bound  $\frac{\|f'(x) f'(y)\|}{d_{ub}(x,y)} \in [c\sqrt{\epsilon}, 1 + \epsilon]$
- Easy to compute distances ||f'(x) f'(y)||
  - Computing ||f'(x) f'(y)|| in Kirszbraun theorem requires computing the entire map itself, which can be done using SDP
  - Here, we can just compute use  $d_{ub}(x, y)$  as a good approximation

### Pros

- ► Least Possible contraction: for any pair simultaneously upto a factor of  $O(\sqrt{\epsilon})$ , i.e., Bound  $\frac{\|f'(x) f'(y)\|}{d_{ub}(x,y)} \in [c\sqrt{\epsilon}, 1 + \epsilon]$
- Easy to compute distances ||f'(x) f'(y)||
  - Computing ||f'(x) f'(y)|| in Kirszbraun theorem requires computing the entire map itself, which can be done using SDP
  - Here, we can just compute use  $d_{ub}(x, y)$  as a good approximation
- Optimal Parameters (See next slide)

### Lower bound results

1.  $\sqrt{\epsilon}$  loss is required: There exists S and  $T = S \cup \{z_1, z_2\}$  and a 1-Lipschitz function f s.t. for any  $(1 + \epsilon)$ -Lipschitz extension of f, their distance has to decrease by a factor of  $\sqrt{\epsilon}$ , i.e.,  $||f'(z_1) - f'(z_2)|| \le O(\sqrt{\epsilon}d_{ub}(z_1, z_2))$ 

### Lower bound results

- 1.  $\sqrt{\epsilon}$  loss is required: There exists S and  $T = S \cup \{z_1, z_2\}$  and a 1-Lipschitz function f s.t. for any  $(1 + \epsilon)$ -Lipschitz extension of f, their distance has to decrease by a factor of  $\sqrt{\epsilon}$ , i.e.,  $\|f'(z_1) - f'(z_2)\| \le O(\sqrt{\epsilon}d_{ub}(z_1, z_2))$
- 2.  $\log |T \setminus S|$  dimensions is required for finite sets: for any m, n, N, there exists an instance s.t.  $|T \setminus S| = N$ , and any outer Lipschitz extension with ||f'(x) -

 $f'(y) \parallel \ge c d_{ub}(x, y)$  requires  $m' = c' \log N$  where  $c' = 1/\log(\frac{L}{c} + 1)$ 

### Lower bound results

- 1.  $\sqrt{\epsilon}$  loss is required: There exists S and  $T = S \cup \{z_1, z_2\}$  and a 1-Lipschitz function f s.t. for any  $(1 + \epsilon)$ -Lipschitz extension of f, their distance has to decrease by a factor of  $\sqrt{\epsilon}$ , i.e.,  $\|f'(z_1) - f'(z_2)\| \le O(\sqrt{\epsilon}d_{ub}(z_1, z_2))$
- 2.  $\log |T \setminus S|$  dimensions is required for finite sets: for any m, n, N, there exists an instance s.t.  $|T \setminus S| = N$ , and any outer Lipschitz extension with  $||f'(x) f'(y)|| \ge cd_{ub}(x, y)$  requires  $m' = c' \log N$  where  $c' = 1/\log(\frac{L}{c} + 1)$
- 3. Infinite dimension is required for infinite sets: for any m, n, there exists an instance with infinite sets  $S \subset T$ , s.t. any outer Lipschitz extension with  $||f'(x) - f'(y)|| \ge cd_{ub}(x, y)$  for some c, requires  $m' = \infty$

### Application I: **Bi-Lipschitz extension**

- Our results immediately implies bi-Lipschitz extension of [MMakarychevMakarychevRazenshteyn'18]
- O(D) distortion
- Caveat: we don't have m' = m + n,
- Pros: easy to compute distances approximately.

• Dataset of objects X with a metric  $d_X$  resembling their similarity.

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>
- **Goal:** Combine into a distance function  $d_c(x, y) = \begin{cases} d_Y(x, y), & x, y \in Y \\ d_X(x, y), & otherwise \end{cases}$

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>
- **Goal:** Combine into a distance function  $d_c(x, y) = \begin{cases} d_Y(x, y), & x, y \in Y \\ d_X(x, y), & otherwise \end{cases}$
- Not necessarily a metric; Compute shortest path on it be  $d_u$

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>
- **Goal:** Combine into a distance function  $d_c(x, y) = \begin{cases} d_Y(x, y), & x, y \in Y \\ d_X(x, y), & otherwise \end{cases}$
- Not necessarily a metric; Compute shortest path on it be  $d_u$
- We want  $d_u$  to be Euclidean but it does not have to be

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>
- **Goal:** Combine into a distance function  $d_c(x, y) = \begin{cases} d_Y(x, y), & x, y \in Y \\ d_X(x, y), & otherwise \end{cases}$
- Not necessarily a metric; Compute shortest path on it be  $d_u$
- We want  $d_u$  to be Euclidean but it does not have to be

#### Theorem:

• Sufficient conditions for it: if  $d_Y(x, y) \le C d_X(x, Y)$  for all  $x, y \in Y$ , then the updated metric is O(CAB)-Euclidean, where we assume  $d_x$  is A –Euclidean and  $d_y$  is B –Euclidean

- Dataset of objects X with a metric  $d_X$  resembling their similarity.
- We get additional information on a subset Y ⊂ X of them and compute the new Euclidean distance d<sub>Y</sub>
- **Goal:** Combine into a distance function  $d_c(x, y) = \begin{cases} d_Y(x, y), & x, y \in Y \\ d_X(x, y), & otherwise \end{cases}$
- Not necessarily a metric; Compute shortest path on it be  $d_u$
- We want  $d_u$  to be Euclidean but it does not have to be

#### **Theorem:**

- Sufficient conditions for it: if  $d_Y(x, y) \le C d_X(x, Y)$  for all  $x, y \in Y$ , then the updated metric is O(CAB)-Euclidean, where we assume  $d_x$  is A –Euclidean and  $d_y$  is B –Euclidean
- Lower bound: The above condition is necessary otherwise one gets at least  $\Omega(\log N)$  distiontion

### Plan

- 1. Background
  - Extension of functions
- 2. Our results
  - Two-sided Kirszbraun Theorem
- 3. Overview of the approach

•  $f'(x) = g'(x) \oplus h'(x)$ 

- $f'(x) = g'(x) \oplus h'(x)$
- 1. g'(x): Kirszbraun extension of f(x).
  - Does not increase distances
  - The same as f(x) on the points in S

- $f'(x) = g'(x) \oplus h'(x)$
- 1. g'(x): Kirszbraun extension of f(x).
  - Does not increase distances
  - The same as f(x) on the points in S
- 2.  $h'(x) = c\sqrt{\epsilon}L h(x)$ :
  - h(x) should be 0 when  $x \in S$
  - Increases as a function of  $R_x \coloneqq dist(x, S)$
  - $||h(x) h(y)|| \approx \Theta(\min(||x y||, R_x + R_y))$
  - Use [Mendel&Naor'04] embedding (rescaled and truncated)

### Construction of *h*

### **Two ingredients:**

- 1. [Mendel&Naor'04]:
  - For any r > 0, there exists a map ψ<sub>r</sub> from ℓ<sub>2</sub><sup>n</sup> to the infinite dimensional sphere of radius r, such that it approximately preserve distances of value at most r.

• 
$$\|\psi(x) - \psi(y)\| = \Theta(\min(\|x - y\|, \sqrt{2}r))$$

### Construction of *h*

### **Two ingredients:**

- 1. [Mendel&Naor'04]:
  - For any r > 0, there exists a map ψ<sub>r</sub> from ℓ<sub>2</sub><sup>n</sup> to the infinite dimensional sphere of radius r, such that it approximately preserves distances of value at most r.

• 
$$\|\psi(x) - \psi(y)\| = \Theta(\min(\|x - y\|, \sqrt{2}r))$$
  
Set  $r \approx R_x$ 

### Construction of *h*

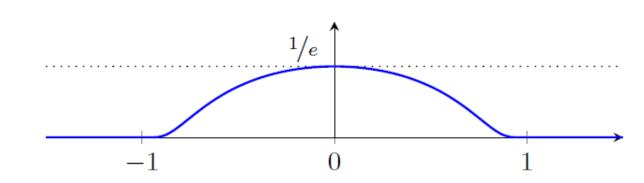
### **Two ingredients:**

- 1. [Mendel&Naor'04]:
  - For any r > 0, there exists a map ψ<sub>r</sub> from ℓ<sub>2</sub><sup>n</sup> to the infinite dimensional sphere of radius r, such that it approximately preserves distances of value at most r.

• 
$$\|\psi(x) - \psi(y)\| = \Theta(\min(\|x - y\|, \sqrt{2}r))$$

### 2. Bump Function:

$$\lambda(t) = \begin{cases} e^{-\frac{1}{1-t^2}}, & \text{if } t \in (-1,1) \\ 0, & \text{otherwise} \end{cases}$$



- $f'(x) = g'(x) \oplus h'(x)$
- 1. g'(x): Kirszbraun extension of f(x).
  - Does not increase distances
  - The same as f(x) on the points in S
- 2.  $h'(x) = c\sqrt{\epsilon}L h(x)$ :
  - h(x) should be 0 when  $x \in S$
  - Increases as a function of  $R_x \coloneqq dist(x, S)$
  - $||h(x) h(y)|| \approx \Theta(\min(||x y||, R_x + R_y))$
  - Use [Mendel&Naor'04] embedding (rescaled and truncated)
  - For finite set  $|T \setminus S|$ , we apply JL on top of h'(x) to get the desired bound on the dimension

### Summary

- Showed two sided variant of the Kirszbraun theorem
- It achieves asymptotically optimal parameters.
- Provides a simple approximate formula for computing distances
- Applications of our results to bi-Lip extension & Updating Euclidean metric.

#### Given:

- $f: S \to \mathbb{R}^m$  is L -Lipschitz
- $S \subset T \subset \mathbb{R}^n$

**Find:** the extended map  $f': T \to \mathbb{R}^m \bigoplus \mathbb{R}^\Delta \approx \mathbb{R}^{m'}$  such that

- f' is  $(1 + \epsilon)L$  –Lipschitz
- $||f'(x) f'(y)|| \ge c\sqrt{\epsilon}d_{ub}(x, y)$  for all  $x, y \in T$
- If  $|T \setminus S|$  is finite, then  $\Delta = O(\log |T \setminus S|)$ .
- Otherwise  $\Delta = \infty$

### Summary

### Thanks! Questions?

- Showed two sided variant of the Kirszbraun theorem
- It achieves asymptotically optimal parameters.
- Provides a simple approximate formula for computing distances
- Applications of our results to Updating Euclidean metric.

#### Given:

- $f: S \to \mathbb{R}^m$  is L -Lipschitz
- $S \subset T \subset \mathbb{R}^n$

**Find:** the extended map  $f': T \to \mathbb{R}^m \bigoplus \mathbb{R}^\Delta \approx \mathbb{R}^{m'}$  such that

- f' is  $(1 + \epsilon)L$  –Lipschitz
- $||f'(x) f'(y)|| \ge c\sqrt{\epsilon}d_{ub}(x, y)$  for all  $x, y \in T$
- If  $|T \setminus S|$  is finite, then  $\Delta = O(\log |T \setminus S|)$ .
- Otherwise  $\Delta = \infty$