
Sepideh Mahabadi
TTIC

Konstantin Makarychev
Northwestern University  

Yury Makarychev
TTIC

Arturs Backurs
TTIC



Plan

1. Background

• Extension of functions

2. Our results

• Two-sided Kirszbraun Theorem

3. Overview of the approach
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Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎
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• Clustering 
• …
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 What if we have no such guarantee?
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Results in a nutshell

A “tight” variant of the Kirszbraun theorem:

It is possible to find an extension map 𝑓𝑓𝒙 such that the distance 

between any pair of points is not decreased by more than what is 

“necessary”.
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𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

• 𝑐𝑐𝐿𝐿-Lipschitz extension 𝑓𝑓′: T → ℝ𝑚𝑚 has  ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≤ 𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′

• Can we find 𝒇𝒇𝒙 such that ‖𝒇𝒇′ 𝒙𝒙′ − 𝒇𝒇′ 𝒚𝒚′ ‖ ≥ 𝛀𝛀(𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ )?

• Short Answer: No

• Long Answer: We need extra relaxations 𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)



A bad example

𝒙𝒙 = (𝟐𝟐,𝟎𝟎)

𝒚𝒚 = (𝟐𝟐,𝟐𝟐)

𝑪𝑪

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦



A bad example

𝒙𝒙 = (𝟐𝟐,𝟎𝟎)

𝒚𝒚 = (𝟐𝟐,𝟐𝟐)

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦
• 𝑓𝑓 is 1-Lipschitz



A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz



A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0



A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0 , so it is not 

possible to get ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≥ Ω(𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′ )



A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0 , so it is not 

possible to get ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≥ Ω(𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′ )
Outer extension



Relaxation I: Outer Extension

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• Use additional coordinates in the image of the extended map



Lipschitz Outer-Extension
Given: a map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎, where

• 𝑆𝑆 ⊆ 𝑇𝑇 ⊂ ℝ𝒏𝒏

• 𝑓𝑓 is 𝐿𝐿 −Lipschitz ℝ𝒏𝒏

S ℝ𝒎𝒎𝑓𝑓

𝐿𝐿



Lipschitz Outer-Extension
Given: a map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎, where

• 𝑆𝑆 ⊆ 𝑇𝑇 ⊂ ℝ𝒏𝒏

• 𝑓𝑓 is 𝐿𝐿 −Lipschitz

Goal: a map 𝒇𝒇𝒙:𝑿𝑿 → ℝ𝒎𝒎′
, where

• 𝑚𝑚′ > 𝑚𝑚
• 𝑓𝑓′ is 𝐿𝐿𝒙 −Lipschitz

• 𝑓𝑓𝒙 is an (outer)-extension of 𝑓𝑓: for every 𝑥𝑥 ∈ 𝑆𝑆
𝑓𝑓′ 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 ⊕ 0, … , 0

ℝ𝒏𝒏

T ℝ𝒎𝒎′

S ℝ𝒎𝒎f’

𝐿𝐿

𝐿𝐿′

𝒎𝒎′ −𝒎𝒎



Relaxation II: increase the Lipschitz constant



Relaxation II: increase the Lipschitz constant

• If 𝑓𝑓𝒙 must have Lipschitz constant equal to 1, then 𝒎𝒎 should be 
mapped to 𝒎𝒎𝒙

• the distances would decrease infinitely.

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

𝒎𝒎
𝒎𝒎𝒙



Relaxation II: increase the Lipschitz constant

• If 𝑓𝑓𝒙 must have Lipschitz constant equal to 1, then 𝒎𝒎 should be 
mapped to 𝒎𝒎𝒙

• the distances would decrease infinitely.

 Instead find a 𝟏𝟏 + 𝝐𝝐 𝑳𝑳-extension 𝑓𝑓𝒙

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

𝒎𝒎
𝒎𝒎𝒙



Results: Two-sided Kirszbraun Theorem

Given:
• 𝑓𝑓: 𝑆𝑆 → ℝ𝑚𝑚 is 𝐿𝐿 −Lipschitz
• 𝑆𝑆 ⊂ 𝑇𝑇 ⊂ ℝ𝑛𝑛

Find: the extended map 𝑓𝑓′:𝑇𝑇 → ℝ𝑚𝑚 ⊕ℝΔ ≈ ℝ𝑚𝑚′  such that

• 𝑓𝑓′ is 1 + 𝜖𝜖 𝐿𝐿 −Lipschitz

• 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥ 𝑐𝑐 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇

• If |𝑇𝑇 ∖ 𝑆𝑆| is finite, then Δ = 𝑂𝑂(log |𝑇𝑇 ∖ 𝑆𝑆|). 

• Otherwise Δ = ∞



Pros

 Least Possible contraction: for any pair simultaneously upto a factor 
of 𝑂𝑂 𝜖𝜖 , i.e.,  Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]



Pros

 Least Possible contraction: for any pair simultaneously upto a factor 
of 𝑂𝑂 𝜖𝜖 , i.e.,  Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]

 Easy to compute distances 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦
• Computing  𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦  in Kirszbraun theorem requires computing the 

entire map itself, which can be done using SDP
• Here, we can just compute use 𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) as a good approximation



Pros

 Least Possible contraction: for any pair simultaneously upto a factor 
of 𝑂𝑂 𝜖𝜖 , i.e.,  Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]

 Easy to compute distances 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦
• Computing  𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦  in Kirszbraun theorem requires computing the 

entire map itself, which can be done using SDP
• Here, we can just compute use 𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) as a good approximation

 Optimal Parameters (See next slide)



Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz 

function 𝑓𝑓 s.t. for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to 

decrease by a factor of 𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂( 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2 )



Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz 

function 𝑓𝑓 s.t. for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to 

decrease by a factor of 𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂( 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2 )

2. log |𝑇𝑇 ∖ 𝑆𝑆| dimensions is required for finite sets: for any 𝑚𝑚,𝑛𝑛,𝑁𝑁, there exists an 

instance s.t. 𝑇𝑇 ∖ 𝑆𝑆 = 𝑁𝑁, and any outer Lipschitz extension with ‖

‖

𝑓𝑓′ 𝑥𝑥 −

𝑓𝑓′  𝑦𝑦 ≥ 𝒄𝒄𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) requires 𝑚𝑚′ = 𝑐𝑐′ log𝑁𝑁 where 𝑐𝑐′ = 1/ log(𝐿𝐿
𝑐𝑐

+ 1)



Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz function 𝑓𝑓 s.t. 

for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to decrease by a factor of 

𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂( 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2 )

2. log |𝑇𝑇 ∖ 𝑆𝑆| dimensions is required for finite sets: for any 𝑚𝑚,𝑛𝑛,𝑁𝑁, there exists an 

instance s.t. 𝑇𝑇 ∖ 𝑆𝑆 = 𝑁𝑁, and any outer Lipschitz extension with 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′  𝑦𝑦 ≥

𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) requires 𝑚𝑚′ = 𝑐𝑐′ log𝑁𝑁 where 𝑐𝑐′ = 1/ log(𝐿𝐿
𝑐𝑐

+ 1)

3. Infinite dimension is required for infinite sets: for any 𝑚𝑚,𝑛𝑛, there exists an instance 

with infinite sets 𝑆𝑆 ⊂ 𝑇𝑇, s.t. any outer Lipschitz extension with 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′  𝑦𝑦 ≥

𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) for some 𝑐𝑐, requires 𝑚𝑚′ = ∞



Application I: Bi-Lipschitz extension

• Our results immediately implies bi-Lipschitz extension of 

[MMakarychevMakarychevRazenshteyn’18] 

• 𝑂𝑂(𝐷𝐷) distortion 

• Caveat: we don’t have 𝑚𝑚′ = 𝑚𝑚 + 𝑛𝑛, 

• Pros: easy to compute distances approximately.



Application II: Updating Euclidean Metric



Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean 
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 ,  𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it:  if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is 
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean 

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion



Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean 
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 ,  𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it:  if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is 
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean 

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion



Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean 
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 ,  𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
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Plan

1. Background

• Extension of functions

2. Our results

• Two-sided Kirszbraun Theorem

3. Overview of the approach
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1. 𝑔𝑔′ 𝑥𝑥 : Kirszbraun extension of 𝑓𝑓 𝑥𝑥 .
• Does not increase distances
• The same as 𝑓𝑓(𝑥𝑥) on the points in 𝑆𝑆
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Construction of 𝑜 

Two ingredients:
1. [Mendel&Naor’04]:

• For any 𝑜𝑜 > 0, there exists a map 𝜓𝜓𝑟𝑟 from ℓ2𝑛𝑛 to the infinite dimensional 
sphere of radius 𝑜𝑜, such that it approximately preserve distances of value at 
most 𝑜𝑜. 

• 𝜓𝜓 𝑥𝑥 − 𝜓𝜓 𝑦𝑦 = Θ(min 𝑥𝑥 − 𝑦𝑦 , 2𝑜𝑜 )
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Summary

• Showed two sided variant of the Kirszbraun theorem
• It achieves asymptotically optimal parameters.
• Provides a simple approximate formula for computing distances
• Applications of our results to bi-Lip extension & Updating Euclidean metric.

Given:
• 𝑓𝑓: 𝑆𝑆 → ℝ𝑚𝑚 is 𝐿𝐿 −Lipschitz
• 𝑆𝑆 ⊂ 𝑇𝑇 ⊂ ℝ𝑛𝑛

Find: the extended map 𝑓𝑓′:𝑇𝑇 → ℝ𝑚𝑚 ⊕ℝΔ ≈ ℝ𝑚𝑚′
 such that

• 𝑓𝑓′ is 1 + 𝜖𝜖 𝐿𝐿 −Lipschitz
• 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥ 𝑐𝑐 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇
• If |𝑇𝑇 ∖ 𝑆𝑆| is finite, then Δ = 𝑂𝑂(log |𝑇𝑇 ∖ 𝑆𝑆|). 
• Otherwise Δ = ∞
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