Two-sided Kirszbraun Theorem

Arturs Backurs
TTIC

Sepideh Mahabadi
TTIC

Konstantin Makarychev
Northwestern University
Yury Makarychev
TTIC

Plan

1. Background

- Extension of functions

2. Our results

- Two-sided Kirszbraun Theorem

3. Overview of the approach

Extension of Functions

Notation throughout the talk

- We have a function $f: S \rightarrow \mathbb{R}^{n}$
- Which is defined over a subset $S \subset \mathbb{R}^{m}$

Extension of Functions

Notation throughout the talk

- We have a function $f: S \rightarrow \mathbb{R}^{n}$
- Which is defined over a subset $S \subset \mathbb{R}^{m}$

Extensions of the map \boldsymbol{f} to a superset T of S

Extension of Functions

Notation throughout the talk

- We have a function $f: S \rightarrow \mathbb{R}^{n}$
- Which is defined over a subset $S \subset \mathbb{R}^{m}$

Extensions of the map \boldsymbol{f} to a superset $\mathbf{S} \subset T \subset \mathbb{R}^{\boldsymbol{n}}$
\square Extension to the superset T, i.e., $f^{\prime}: T \rightarrow \mathbb{R}^{m}$ so that

- $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for any $x \in S$
- Maintaining other properties ..

Extension of Functions

Notation throughout the talk

- We have a function $f: S \rightarrow \mathbb{R}^{n}$
- Which is defined over a subset $S \subset \mathbb{R}^{m}$

Extensions of the map \boldsymbol{f} to a superset $\mathbf{S} \subset T \subset \mathbb{R}^{\boldsymbol{n}}$
\square Extension to the superset T, i.e., $f^{\prime}: T \rightarrow \mathbb{R}^{m}$ so that

- $f^{\prime}(x)=f(x)$ for any $x \in S$
- Maintaining other properties

1. Lipschitz Constant
(Lipschitz Extension)
2. Bi-Lipschitz Constant, i.e., distortion
(Bi-Lipschitz Extension)

Extension of Functions

Notation throughout the talk

- We have a function $f: S \rightarrow \mathbb{R}^{n}$
- Which is defined over a subset $S \subset \mathbb{R}^{m}$

$$
\text { Extensions of the map } \boldsymbol{f} \text { to a superset } T \text { of } \boldsymbol{A}
$$

\square Extension to the whole \mathbb{R}^{n}, i.e., $f^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that

- $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for any $x \in A$
- Maintaining other properties

1. Lipschitz Constant
(Lipschitz Extension)
2. Bi-Lipschitz Constant, i.e., distortion
(Bi-Lipschitz Extension)

Lipschitz Extension

- A map $f: X \rightarrow Y$ is L-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-\boldsymbol{f}\left(\boldsymbol{x}^{\prime}\right)\right\| \leq \boldsymbol{L} \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\| \Longrightarrow \text { Euclidean }
$$

Lipschitz Extension

\square A map $f: X \rightarrow Y$ is L-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq L \cdot\left\|x-x^{\prime}\right\| \Rightarrow \text { Euclidean }
$$

\square Lipschitz extension:
Given: a L-Lipschitz map $f: S \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $S \subseteq \mathbb{R}^{\boldsymbol{n}}$

Lipschitz Extension

$\square \quad$ A map $f: X \rightarrow Y$ is L-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq L \cdot\left\|x-x^{\prime}\right\|
$$

Euclidean

\square Lipschitz extension:
Given: a L-Lipschitz map $f: S \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $S \subseteq \mathbb{R}^{\boldsymbol{n}}$

- f^{\prime} is an extension of f
- f^{\prime} is L^{\prime}-Lipschitz

Kirszbraun Extension Theorem

- A map $f: X \rightarrow Y$ is L-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq L \cdot\left\|x-x^{\prime}\right\| \Rightarrow \text { Euclidean }
$$

\square Lipschitz extension:

Given: a L-Lipschitz map $f: S \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $S \subseteq \mathbb{R}^{\boldsymbol{n}}$

- f^{\prime} is an extension of f
- f^{\prime} is L^{\prime}-Lipschitz

Kirszbraun extension theorem '34: for $\boldsymbol{S} \subset \mathbb{R}^{\boldsymbol{n}}$, every L-Lipschitz map $\boldsymbol{f}: \boldsymbol{S} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ can be extended to the whole \mathbb{R}^{n} keeping the same Lipschitz constant, i.e., $L^{\prime}=L$.

Kirszbraun Extension Theorem

- A map $f: X \rightarrow Y$ is L-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq L \cdot \| x \square \square \text { Applications }
$$

\square Lipschitz extension:
Given: a L-Lipschitz map $f: S$ Goal: a $\operatorname{map} f^{\prime}: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ s.t.

- f^{\prime} is an extension of f
- f^{\prime} is L^{\prime}-Lipschitz
- Prioritized and Terminal Dimension reduction
- Clustering
- ...

Kirszbraun extension theorem '34: for $\boldsymbol{S} \subset \mathbb{R}^{\boldsymbol{n}}$, every L-Lipschitz map $\boldsymbol{f}: \boldsymbol{S} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ can be extended to the whole \mathbb{R}^{n} keeping the same Lipschitz constant, i.e., $L^{\prime}=L$.
f^{\prime} can decrease distances arbitrarily

f^{\prime} can decrease distances arbitrarily

\square Can we get any lower bound?

f^{\prime} can decrease distances arbitrarily

\square Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]
- Initial map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D, i.e., for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|x-x^{\prime}\right\| \leq\left\|f(x)-\boldsymbol{f}\left(x^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|x-x^{\prime}\right\|
$$

f^{\prime} can decrease distances arbitrarily

\square Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]

- Initial map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D, i.e., for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|x-x^{\prime}\right\| \leq\left\|f(x)-\boldsymbol{f}\left(x^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|x-x^{\prime}\right\|
$$

- f^{\prime} will have distortion $O(D)$
- Using "extra coordinates"

f^{\prime} can decrease distances arbitrarily

\square Can we get any lower bound?

- Bi-Lipschitz extension: [MMMR'18]
- Initial map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D, i.e., for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\| \leq\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|
$$

- f^{\prime} will have distortion $O(D)$
- Using "extra coordinates"
$>$ What if we have no such guarantee?

Two-Sided Kirszbraun Theorem

Decreasing distances is unavoidable

Two-Sided Kirszbraun Theorem

\square Decreasing distances is unavoidable

- $x, y \in S$
- $\|f(x)-f(y)\|$ is small

Two-Sided Kirszbraun Theorem

\square Decreasing distances is unavoidable

- $x, y \in S$
- $\|f(x)-f(y)\|$ is small
- $x^{\prime} \in T$ is close to x, and $y^{\prime} \in T$ is close to y

Two-Sided Kirszbraun Theorem

\square Decreasing distances is unavoidable

- $x, y \in S$
- $\|f(x)-f(y)\|$ is small
- $x^{\prime} \in T$ is close to x, and $y^{\prime} \in T$ is close to y

$>$ Question: Can we decrease distances between any pair of points as little as possible?

Plan

1. Background

- Extension of functions

2. Our results

- Two-sided Kirszbraun Theorem

3. Overview of the approach

Results in a nutshell

A "tight" variant of the Kirszbraun theorem:

It is possible to find an extension map f^{\prime} such that the distance between any pair of points is not decreased by more than what is "necessary".

What is necessary? An upper bound

What is necessary? An upper bound

$$
\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)
$$

What is necessary? An upper bound

$$
\inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)
$$

What is necessary? An upper bound

$$
\min \left(L\left\|x^{\prime}-y^{\prime}\right\| \inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)\right.
$$

What is necessary? An upper bound

- Define metric

$$
\boldsymbol{d}_{\boldsymbol{u} \boldsymbol{b}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=\min \left(L\left\|x^{\prime}-y^{\prime}\right\| \inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)\right.
$$

What is necessary? An upper bound

- Define metric

$$
\boldsymbol{d}_{\boldsymbol{u} \boldsymbol{b}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=\min \left(L\left\|x^{\prime}-y^{\prime}\right\|, \inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)\right.
$$

- cL-Lipschitz extension $f^{\prime}: T \rightarrow \mathbb{R}^{m}$ has $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \leq c d_{u b}\left(x^{\prime}, y^{\prime}\right)$

What is necessary? An upper bound

- Define metric

$$
\boldsymbol{d}_{\boldsymbol{u} \boldsymbol{b}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=\min \left(L\left\|x^{\prime}-y^{\prime}\right\|, \inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)\right.
$$

- $c L$-Lipschitz extension $f^{\prime}: T \rightarrow \mathbb{R}^{m}$ has $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \leq c d_{u b}\left(x^{\prime}, y^{\prime}\right)$
- Can we find \boldsymbol{f}^{\prime} such that $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \geq \Omega\left(d_{u b}\left(x^{\prime}, y^{\prime}\right)\right)$?

What is necessary? An upper bound

- Define metric

$$
\boldsymbol{d}_{\boldsymbol{u} \boldsymbol{b}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=\min \left(L\left\|x^{\prime}-y^{\prime}\right\|, \inf _{x, y \in S}\left(L\left\|x^{\prime}-x\right\|+\|f(x)-f(y)\|+L\left\|y-y^{\prime}\right\|\right)\right.
$$

- $c L$-Lipschitz extension $f^{\prime}: T \rightarrow \mathbb{R}^{m}$ has $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \leq c d_{u b}\left(x^{\prime}, y^{\prime}\right)$
- Can we find \boldsymbol{f}^{\prime} such that $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \geq \Omega\left(d_{\boldsymbol{u} b}\left(x^{\prime}, y^{\prime}\right)\right)$?
- Short Answer: No
- Long Answer: We need extra relaxations

A bad example

- $S=C \cup\{x, y\}$

A bad example

- $S=C \cup\{x, y\}$
- f is 1-Lipschitz

A bad example

- $S=C \cup\{x, y\}, T=C \cup[x, y]$
- f is 1-Lipschitz

A bad example

- $S=C \cup\{x, y\}, T=C \cup[x, y]$
- f is 1-Lipschitz
- $d_{u b}>0$ for every pair of points $u, v \in T$
- But the image of $[x, y]$ intersects the circle, i.e., $f^{\prime}(u)-f^{\prime}(v)=0$

A bad example

- $S=C \cup\{x, y\}, T=C \cup[x, y]$
- f is 1-Lipschitz
- $d_{u b}>0$ for every pair of points $u, v \in T$
- But the image of $[x, y]$ intersects the circle, i.e., $f^{\prime}(u)-f^{\prime}(v)=0$, so it is not possible to get $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \geq \Omega\left(d_{u b}\left(x^{\prime}, y^{\prime}\right)\right)$

A bad example

- $S=C \cup\{x, y\}, T=C \cup[x, y]$
- f is 1-Lipschitz
- $d_{u b}>0$ for every pair of points $u, v \in T$
- But the image of $[x, y]$ intersects the circle, i.e., $f^{\prime}(u)-f^{\prime}(v)=0$, so it is not possible to get $\left\|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(y^{\prime}\right)\right\| \geq \Omega\left(d_{u b}\left(x^{\prime}, y^{\prime}\right)\right)$

Relaxation I: Outer Extension

- Use additional coordinates in the image of the extended map

Lipschitz Outer-Extension

Given: a map $f: S \rightarrow \mathbb{R}^{m}$, where

- $S \subseteq T \subset \mathbb{R}^{\boldsymbol{n}}$
- f is L-Lipschitz

Lipschitz Outer-Extension

Given: a map $f: S \rightarrow \mathbb{R}^{m}$, where

- $S \subseteq T \subset \mathbb{R}^{n}$
- f is L-Lipschitz

Goal: $\operatorname{a~map} f^{\prime}: X \rightarrow \mathbb{R}^{m^{\prime}}$, where

- $m^{\prime}>m$
- f^{\prime} is L^{\prime}-Lipschitz

- f^{\prime} is an (outer)-extension of f : for every $x \in S$

$$
f^{\prime}(x)=f(x) \bigoplus(0, \ldots, 0)
$$

Relaxation II: increase the Lipschitz constant

Relaxation II: increase the Lipschitz constant

- If f^{\prime} must have Lipschitz constant equal to 1 , then m should be mapped to m^{\prime}
- the distances would decrease infinitely.

Relaxation II: increase the Lipschitz constant

- If f^{\prime} must have Lipschitz constant equal to 1 , then m should be mapped to m^{\prime}
- the distances would decrease infinitely.
$>$ Instead find a $(\mathbb{1}+\epsilon) L$-extension f^{\prime}

Results: Two-sided Kirszbraun Theorem

Given:

- $f: S \rightarrow \mathbb{R}^{m}$ is L-Lipschitz
- $S \subset T \subset \mathbb{R}^{n}$

Find: the extended map $f^{\prime}: T \rightarrow \mathbb{R}^{m} \oplus \mathbb{R}^{\Delta} \approx \mathbb{R}^{m^{\prime}}$ such that

- f^{\prime} is $(1+\epsilon) L$-Lipschitz
- $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \geq c \sqrt{\epsilon} d_{u b}(x, y)$ for all $x, y \in T$
- If $|T \backslash S|$ is finite, then $\Delta=O(\log |T \backslash S|)$.
- Otherwise $\Delta=\infty$

Pros

$>$ Least Possible contraction: for any pair simultaneously upto a factor of $O(\sqrt{\epsilon})$, i.e., Bound $\frac{\left\|f^{\prime}(x)-f^{\prime}(y)\right\|}{d_{u b}(x, y)} \in[c \sqrt{\epsilon}, 1+\epsilon]$

Pros

$>$ Least Possible contraction: for any pair simultaneously upto a factor of $O(\sqrt{\epsilon})$, i.e., Bound $\frac{\left\|f^{\prime}(x)-f^{\prime}(y)\right\|}{d_{u b}(x, y)} \in[c \sqrt{\epsilon}, 1+\epsilon]$
$>$ Easy to compute distances $\left\|f^{\prime}(x)-f^{\prime}(y)\right\|$

- Computing $\left\|f^{\prime}(x)-f^{\prime}(y)\right\|$ in Kirszbraun theorem requires computing the entire map itself, which can be done using SDP
- Here, we can just compute use $d_{u b}(x, y)$ as a good approximation

Pros

$>$ Least Possible contraction: for any pair simultaneously upto a factor of $O(\sqrt{\epsilon})$, i.e., Bound $\frac{\left\|f^{\prime}(x)-f^{\prime}(y)\right\|}{d_{u b}(x, y)} \in[c \sqrt{\epsilon}, 1+\epsilon]$
$>$ Easy to compute distances $\left\|f^{\prime}(x)-f^{\prime}(y)\right\|$

- Computing $\left\|f^{\prime}(x)-f^{\prime}(y)\right\|$ in Kirszbraun theorem requires computing the entire map itself, which can be done using SDP
- Here, we can just compute use $d_{u b}(x, y)$ as a good approximation
> Optimal Parameters (See next slide)

Lower bound results

1. $\sqrt{\epsilon}$ loss is required: There exists S and $T=S \cup\left\{Z_{1}, Z_{2}\right\}$ and a 1-Lipschitz function f s.t. for any $(1+\epsilon)$-Lipschitz extension of f, their distance has to decrease by a factor of $\sqrt{\epsilon}$, i.e., $\left\|f^{\prime}\left(z_{1}\right)-f^{\prime}\left(z_{2}\right)\right\| \leq O\left(\sqrt{\epsilon} d_{u b}\left(z_{1}, z_{2}\right)\right)$

Lower bound results

1. $\sqrt{\epsilon}$ loss is required: There exists S and $T=S \cup\left\{z_{1}, z_{2}\right\}$ and a 1-Lipschitz function f s.t. for any $(1+\epsilon)$-Lipschitz extension of f, their distance has to decrease by a factor of $\sqrt{\epsilon}$, i.e., $\left\|f^{\prime}\left(z_{1}\right)-f^{\prime}\left(z_{2}\right)\right\| \leq O\left(\sqrt{\epsilon} d_{u b}\left(z_{1}, z_{2}\right)\right)$
2. $\log |T \backslash S|$ dimensions is required for finite sets: for any m, n, N, there exists an instance s.t. $|T \backslash S|=N$, and any outer Lipschitz extension with \|f $f^{\prime}(x)-$ $f^{\prime}(y) \| \geq \boldsymbol{c} d_{u b}(x, y)$ requires $m^{\prime}=c^{\prime} \log N$ where $c^{\prime}=1 / \log \left(\frac{L}{c}+1\right)$

Lower bound results

1. $\sqrt{\epsilon}$ loss is required: There exists S and $T=S \cup\left\{z_{1}, z_{2}\right\}$ and a 1-Lipschitz function f s.t. for any $(1+\epsilon)$-Lipschitz extension of f, their distance has to decrease by a factor of $\sqrt{\epsilon}$, i.e., $\left\|f^{\prime}\left(z_{1}\right)-f^{\prime}\left(z_{2}\right)\right\| \leq O\left(\sqrt{\epsilon} d_{u b}\left(z_{1}, z_{2}\right)\right)$
2. $\log |T \backslash S|$ dimensions is required for finite sets: for any m, n, N, there exists an instance s.t. $|T \backslash S|=N$, and any outer Lipschitz extension with $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \geq$ $c d_{u b}(x, y)$ requires $m^{\prime}=c^{\prime} \log N$ where $c^{\prime}=1 / \log \left(\frac{L}{c}+1\right)$
3. Infinite dimension is required for infinite sets: for any m, n, there exists an instance with infinite sets $S \subset T$, s.t. any outer Lipschitz extension with $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \geq$ $c d_{u b}(x, y)$ for some c, requires $m^{\prime}=\infty$

Application I: Bi-Lipschitz extension

- Our results immediately implies bi-Lipschitz extension of [MMakarychevMakarychevRazenshteyn'18]
- $O(D)$ distortion
- Caveat: we don't have $m^{\prime}=m+n$,
- Pros: easy to compute distances approximately.

Application II: Updating Euclidean Metric

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric d_{X} resembling their similarity.

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric \boldsymbol{d}_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric \boldsymbol{d}_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}
- Goal: Combine into a distance function $\boldsymbol{d}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{l}d_{Y}(x, y), \quad x, y \in Y \\ d_{X}(x, y), \text { otherwise }\end{array}\right.$

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric \boldsymbol{d}_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}
- Goal: Combine into a distance function $\boldsymbol{d}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{l}d_{Y}(x, y), \quad x, y \in Y \\ d_{X}(x, y), \text { otherwise }\end{array}\right.$
- Not necessarily a metric; Compute shortest path on it be $\boldsymbol{d}_{\boldsymbol{u}}$

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric \boldsymbol{d}_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}
- Goal: Combine into a distance function $\boldsymbol{d}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{l}d_{Y}(x, y), \quad x, y \in Y \\ d_{X}(x, y), \text { otherwise }\end{array}\right.$
- Not necessarily a metric; Compute shortest path on it be $\boldsymbol{d}_{\boldsymbol{u}}$
- We want d_{u} to be Euclidean but it does not have to be

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric d_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}
- Goal: Combine into a distance function $\boldsymbol{d}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}d_{Y}(x, y), \quad x, y \in Y \\ d_{X}(x, y), & \text { otherwise }\end{cases}$
- Not necessarily a metric; Compute shortest path on it be $\boldsymbol{d}_{\boldsymbol{u}}$
- We want d_{u} to be Euclidean but it does not have to be

Theorem:

- Sufficient conditions for it: if $d_{Y}(x, y) \leq C d_{X}(x, Y)$ for all $x, y \in Y$, then the updated metric is $\boldsymbol{O}(\boldsymbol{C A B})$-Euclidean, where we assume d_{x} is A-Euclidean and d_{y} is B-Euclidean

Application II: Updating Euclidean Metric

- Dataset of objects X with a metric d_{X} resembling their similarity.
- We get additional information on a subset $Y \subset X$ of them and compute the new Euclidean distance d_{Y}
- Goal: Combine into a distance function $\boldsymbol{d}_{\boldsymbol{c}}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{lr}d_{Y}(x, y), & x, y \in Y \\ d_{X}(x, y), & \text { otherwise }\end{array}\right.$
- Not necessarily a metric; Compute shortest path on it be $\boldsymbol{d}_{\boldsymbol{u}}$
- We want d_{u} to be Euclidean but it does not have to be

Theorem:

- Sufficient conditions for it: if $d_{Y}(x, y) \leq C d_{X}(x, Y)$ for all $x, y \in Y$, then the updated metric is $\boldsymbol{O}(\boldsymbol{C A B})$-Euclidean, where we assume d_{x} is A-Euclidean and d_{y} is B-Euclidean
- Lower bound: The above condition is necessary otherwise one gets at least $\Omega(\log N)$ distiortion

Plan

1. Background

- Extension of functions

2. Our results

- Two-sided Kirszbraun Theorem

3. Overview of the approach

Overall approach

- $f^{\prime}(x)=g^{\prime}(x) \oplus h^{\prime}(x)$

Overall approach

- $f^{\prime}(x)=g^{\prime}(x) \oplus h^{\prime}(x)$

1. $g^{\prime}(x)$: Kirszbraun extension of $f(x)$.

- Does not increase distances
- The same as $f(x)$ on the points in S

Overall approach

- $f^{\prime}(x)=g^{\prime}(x) \oplus h^{\prime}(x)$

1. $g^{\prime}(x)$: Kirszbraun extension of $f(x)$.

- Does not increase distances
- The same as $f(x)$ on the points in S

2. $h^{\prime}(x)=c \sqrt{\epsilon} L h(x):$

- $h(x)$ should be 0 when $x \in S$
- Increases as a function of $R_{x}:=\operatorname{dist}(x, S)$
- $\|h(x)-h(y)\| \approx \Theta\left(\min \left(\|x-y\|, R_{x}+R_{y}\right)\right)$
- Use [Mendel\&Naor'04] embedding (rescaled and truncated)

Construction of h

Two ingredients:

1. [Mendel\&Naor'04]:

- For any $r>0$, there exists a map ψ_{r} from ℓ_{2}^{n} to the infinite dimensional sphere of radius r, such that it approximately preserve distances of value at most r.
- $\|\psi(x)-\psi(y)\|=\Theta(\min (\|x-y\|, \sqrt{2} r))$

Construction of h

Two ingredients:

1. [Mendel\&Naor'04]:

- For any $r>0$, there exists a map ψ_{r} from ℓ_{2}^{n} to the infinite dimensional sphere of radius r, such that it approximately preserves distances of value at most r.
- $\|\psi(x)-\psi(y)\|=\Theta(\min (\|x-y\|, \sqrt{2} r))$

Set $r \approx \boldsymbol{R}_{\boldsymbol{x}}$

Construction of h

Two ingredients:

1. [Mendel\&Naor'04]:

- For any $r>0$, there exists a map ψ_{r} from ℓ_{2}^{n} to the infinite dimensional sphere of radius r, such that it approximately preserves distances of value at most r.
- $\|\psi(x)-\psi(y)\|=\Theta(\min (\|x-y\|, \sqrt{2} r))$

2. Bump Function:

$$
\lambda(t)= \begin{cases}e^{-\frac{1}{1-t^{2}}}, & \text { if } t \in(-1,1) \\ 0, & \text { otherwise }\end{cases}
$$

Overall approach

- $f^{\prime}(x)=g^{\prime}(x) \oplus h^{\prime}(x)$

1. $g^{\prime}(x)$: Kirszbraun extension of $f(x)$.

- Does not increase distances
- The same as $f(x)$ on the points in S

2. $h^{\prime}(x)=c \sqrt{\epsilon} L h(x)$:

- $h(x)$ should be 0 when $x \in S$
- Increases as a function of $R_{x}:=\operatorname{dist}(x, S)$
- $\|h(x)-h(y)\| \approx \Theta\left(\min \left(\|x-y\|, R_{x}+R_{y}\right)\right)$
- Use [Mendel\&Naor'04] embedding (rescaled and truncated)
- For finite set $|T \backslash S|$, we apply JL on top of $\boldsymbol{h}^{\prime}(\boldsymbol{x})$ to get the desired bound on the dimension

Summary

- Showed two sided variant of the Kirszbraun theorem
- It achieves asymptotically optimal parameters.
- Provides a simple approximate formula for computing distances
- Applications of our results to bi-Lip extension \& Updating Euclidean metric.

Given:

- $f: S \rightarrow \mathbb{R}^{m}$ is L-Lipschitz
- $\quad S \subset T \subset \mathbb{R}^{n}$

Find: the extended $\operatorname{map} f^{\prime}: T \rightarrow \mathbb{R}^{m} \oplus \mathbb{R}^{\Delta} \approx \mathbb{R}^{m^{\prime}}$ such that

- f^{\prime} is $(1+\epsilon) L$-Lipschitz
- $\quad\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \geq c \sqrt{\epsilon} d_{u b}(x, y)$ for all $x, y \in T$
- If $|T \backslash S|$ is finite, then $\Delta=O(\log |T \backslash S|)$.
- Otherwise $\Delta=\infty$

Thanks!

Summary

- Showed two sided variant of the Kirszbraun theorem
- It achieves asymptotically optimal parameters.
- Provides a simple approximate formula for computing distances
- Applications of our results to Updating Euclidean metric.

Given:

- $f: S \rightarrow \mathbb{R}^{m}$ is L-Lipschitz
- $\quad S \subset T \subset \mathbb{R}^{n}$

Find: the extended $\operatorname{map} f^{\prime}: T \rightarrow \mathbb{R}^{m} \oplus \mathbb{R}^{\Delta} \approx \mathbb{R}^{m^{\prime}}$ such that

- f^{\prime} is $(1+\epsilon) L$-Lipschitz
- $\quad\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \geq c \sqrt{\epsilon} d_{u b}(x, y)$ for all $x, y \in T$
- If $|T \backslash S|$ is finite, then $\Delta=O(\log |T \backslash S|)$.
- Otherwise $\Delta=\infty$

