
Sepideh Mahabadi
TTIC

Konstantin Makarychev
Northwestern University

Yury Makarychev
TTIC

Arturs Backurs
TTIC

Plan

1. Background

• Extension of functions

2. Our results

• Two-sided Kirszbraun Theorem

3. Overview of the approach

Extension of Functions

Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎

ℝ𝒏𝒏

S ℝ𝒎𝒎f

XT

Extension of Functions

Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎

S ℝ𝒎𝒎f’

ℝ𝒏𝒏

Extensions of the map 𝒇𝒇 to a superset 𝑻𝑻 of 𝑺𝑺

XT

Extension of Functions

Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎

 Extension to the superset 𝑻𝑻 , i.e., 𝒇𝒇′:𝑻𝑻 → ℝ𝒎𝒎 so that
• 𝒇𝒇′ 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 for any 𝑥𝑥 ∈ 𝑆𝑆
• Maintaining other properties …

S ℝ𝒎𝒎f’

ℝ𝒏𝒏

Extensions of the map 𝒇𝒇 to a superset 𝐒𝐒 ⊂ 𝑻𝑻 ⊂ ℝ𝒏𝒏

XT

Extension of Functions

Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎

 Extension to the superset 𝑻𝑻 , i.e., 𝒇𝒇′:𝑻𝑻 → ℝ𝒎𝒎 so that
• 𝒇𝒇′ 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 for any 𝑥𝑥 ∈ 𝑆𝑆
• Maintaining other properties …

S ℝ𝒎𝒎f’

ℝ𝒏𝒏

Extensions of the map 𝒇𝒇 to a superset 𝐒𝐒 ⊂ 𝑻𝑻 ⊂ ℝ𝒏𝒏

1. Lipschitz Constant
(Lipschitz Extension)

2. Bi-Lipschitz Constant, i.e.,
distortion

(Bi-Lipschitz Extension)

Extension of Functions

Notation throughout the talk
• We have a function 𝒇𝒇:𝑺𝑺 → ℝ𝒏𝒏

• Which is defined over a subset 𝑺𝑺 ⊂ ℝ𝒎𝒎

 Extension to the whole ℝ𝒏𝒏, i.e., 𝒇𝒇′:ℝ𝒏𝒏 → ℝ𝒎𝒎 so that
• 𝒇𝒇′ 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 for any 𝑥𝑥 ∈ 𝐴𝐴
• Maintaining other properties … 1. Lipschitz Constant

(Lipschitz Extension)
2. Bi-Lipschitz Constant, i.e.,

distortion
(Bi-Lipschitz Extension)

S ℝ𝒎𝒎f’

ℝ𝒏𝒏

Extensions of the map 𝒇𝒇 to a superset 𝑻𝑻 of 𝑨𝑨

Lipschitz Extension
 A map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑳𝑳-Lipschitz if for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:

𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝑳𝑳 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙 Euclidean

Lipschitz Extension
 A map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑳𝑳-Lipschitz if for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:

𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝑳𝑳 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

 Lipschitz extension:
Given: a 𝐿𝐿-Lipschitz map 𝑓𝑓: 𝑆𝑆 → ℝ𝒎𝒎, where 𝑆𝑆 ⊆ ℝ𝒏𝒏

ℝ𝒏𝒏

S ℝ𝒎𝒎f

𝐿𝐿

Euclidean

Lipschitz Extension
 A map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑳𝑳-Lipschitz if for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:

𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝑳𝑳 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

 Lipschitz extension:
Given: a 𝐿𝐿-Lipschitz map 𝑓𝑓: 𝑆𝑆 → ℝ𝒎𝒎, where 𝑆𝑆 ⊆ ℝ𝒏𝒏

Goal: a map 𝑓𝑓′:ℝ𝒏𝒏 → ℝ𝒎𝒎 s.t.
• 𝑓𝑓′ is an extension of 𝑓𝑓
• 𝑓𝑓′ is 𝐿𝐿𝒙-Lipschitz

ℝ𝒏𝒏

S ℝ𝒎𝒎f’

𝐿𝐿

𝑳𝑳𝒙
Euclidean

Kirszbraun Extension Theorem
 A map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑳𝑳-Lipschitz if for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:

𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝑳𝑳 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

 Lipschitz extension:
Given: a 𝐿𝐿-Lipschitz map 𝑓𝑓: 𝑆𝑆 → ℝ𝒎𝒎, where 𝑆𝑆 ⊆ ℝ𝒏𝒏

Goal: a map 𝑓𝑓′:ℝ𝒏𝒏 → ℝ𝒎𝒎 s.t.
• 𝑓𝑓′ is an extension of 𝑓𝑓
• 𝑓𝑓′ is 𝐿𝐿𝒙-Lipschitz

Kirszbraun extension theorem ‘34: for 𝑺𝑺 ⊂ ℝ𝒏𝒏, every 𝐿𝐿-Lipschitz map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎
can be extended to the whole ℝ𝑛𝑛 keeping the same Lipschitz constant,
 i.e., 𝑳𝑳′ = 𝑳𝑳.

ℝ𝒏𝒏

S ℝ𝒎𝒎f’

𝐿𝐿

𝑳𝑳
Euclidean

Kirszbraun Extension Theorem
 A map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑳𝑳-Lipschitz if for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:

𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝑳𝑳 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

 Lipschitz extension:
Given: a 𝐿𝐿-Lipschitz map 𝑓𝑓: 𝑆𝑆 → ℝ𝒎𝒎, where 𝑆𝑆 ⊆ ℝ𝒏𝒏

Goal: a map 𝑓𝑓′:ℝ𝒏𝒏 → ℝ𝒎𝒎 s.t.
• 𝑓𝑓′ is an extension of 𝑓𝑓
• 𝑓𝑓′ is 𝐿𝐿𝒙-Lipschitz

Kirszbraun extension theorem ‘34: for 𝑺𝑺 ⊂ ℝ𝒏𝒏, every 𝐿𝐿-Lipschitz map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎
can be extended to the whole ℝ𝑛𝑛 keeping the same Lipschitz constant,
 i.e., 𝑳𝑳′ = 𝑳𝑳.

ℝ𝒏𝒏

S ℝ𝒎𝒎f’

𝐿𝐿

𝑳𝑳
Euclidean Applications

• Prioritized and Terminal Dimension
reduction

• Clustering
• …

𝑓𝑓𝒙 can decrease distances arbitrarily

𝑓𝑓𝒙 can decrease distances arbitrarily

 Can we get any lower bound?

𝑓𝑓𝒙 can decrease distances arbitrarily

 Can we get any lower bound?

• Bi-Lipschitz extension: [MMMR’18]
• Initial map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑫𝑫-bi-Lipschitz or has distortion 𝑫𝑫 , i.e., for some 𝜆𝜆

and all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:
 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙 ≤ 𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝐷𝐷 ⋅ 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

𝑓𝑓𝒙 can decrease distances arbitrarily

 Can we get any lower bound?

• Bi-Lipschitz extension: [MMMR’18]
• Initial map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑫𝑫-bi-Lipschitz or has distortion 𝑫𝑫 , i.e., for some 𝜆𝜆

and all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:
 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙 ≤ 𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝐷𝐷 ⋅ 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

• 𝑓𝑓′ will have distortion 𝑂𝑂 𝐷𝐷
• Using “extra coordinates”

𝑓𝑓𝒙 can decrease distances arbitrarily

 Can we get any lower bound?

• Bi-Lipschitz extension: [MMMR’18]
• Initial map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is 𝑫𝑫-bi-Lipschitz or has distortion 𝑫𝑫 , i.e., for some 𝜆𝜆

and all 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋:
 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙 ≤ 𝒇𝒇 𝒙𝒙 − 𝒇𝒇 𝒙𝒙𝒙 ≤ 𝐷𝐷 ⋅ 𝜆𝜆 ⋅ 𝒙𝒙 − 𝒙𝒙𝒙

• 𝑓𝑓′ will have distortion 𝑂𝑂 𝐷𝐷
• Using “extra coordinates”

 What if we have no such guarantee?

Two-Sided Kirszbraun Theorem

 Decreasing distances is unavoidable

Two-Sided Kirszbraun Theorem

 Decreasing distances is unavoidable
• 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆
• ‖𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑦𝑦)‖ is small 𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

Two-Sided Kirszbraun Theorem

 Decreasing distances is unavoidable
• 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆
• ‖𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑦𝑦)‖ is small
• 𝑥𝑥′ ∈ 𝑇𝑇 is close to 𝑥𝑥, and 𝑦𝑦′ ∈ 𝑇𝑇 is close to 𝑦𝑦

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓𝒙(𝑥𝑥𝒙)

𝑓𝑓𝒙(𝑦𝑦𝒙)

Two-Sided Kirszbraun Theorem

 Decreasing distances is unavoidable
• 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆
• ‖𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑦𝑦)‖ is small
• 𝑥𝑥′ ∈ 𝑇𝑇 is close to 𝑥𝑥, and 𝑦𝑦′ ∈ 𝑇𝑇 is close to 𝑦𝑦

 Question: Can we decrease distances between any pair of points as little
as possible?

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

Plan

1. Background

• Extension of functions

2. Our results

• Two-sided Kirszbraun Theorem

3. Overview of the approach

Results in a nutshell

A “tight” variant of the Kirszbraun theorem:

It is possible to find an extension map 𝑓𝑓𝒙 such that the distance

between any pair of points is not decreased by more than what is

“necessary”.

What is necessary? An upper bound

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

• 𝑐𝑐𝐿𝐿-Lipschitz extension 𝑓𝑓′: T → ℝ𝑚𝑚 has ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≤ 𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

• 𝑐𝑐𝐿𝐿-Lipschitz extension 𝑓𝑓′: T → ℝ𝑚𝑚 has ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≤ 𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′

• Can we find 𝒇𝒇𝒙 such that ‖𝒇𝒇′ 𝒙𝒙′ − 𝒇𝒇′ 𝒚𝒚′ ‖ ≥ 𝛀𝛀(𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′)?

𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

What is necessary? An upper bound

• Define metric
𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′ = min(𝐿𝐿 𝑥𝑥′ − 𝑦𝑦′ , inf

𝑥𝑥,𝑦𝑦∈𝑆𝑆
(𝐿𝐿 𝑥𝑥′ − 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 + 𝐿𝐿‖𝑦𝑦 − 𝑦𝑦′‖)

• 𝑐𝑐𝐿𝐿-Lipschitz extension 𝑓𝑓′: T → ℝ𝑚𝑚 has ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≤ 𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′

• Can we find 𝒇𝒇𝒙 such that ‖𝒇𝒇′ 𝒙𝒙′ − 𝒇𝒇′ 𝒚𝒚′ ‖ ≥ 𝛀𝛀(𝒅𝒅𝒖𝒖𝒖𝒖 𝒙𝒙′,𝒚𝒚′)?

• Short Answer: No

• Long Answer: We need extra relaxations 𝒙𝒙

𝒚𝒚

𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑦𝑦)

𝑓𝑓

𝑓𝑓

𝒙𝒙𝒙

𝒚𝒚𝒙

𝑓𝑓(𝑥𝑥𝒙)

𝑓𝑓(𝑦𝑦𝒙)

A bad example

𝒙𝒙 = (𝟐𝟐,𝟎𝟎)

𝒚𝒚 = (𝟐𝟐,𝟐𝟐)

𝑪𝑪

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦

A bad example

𝒙𝒙 = (𝟐𝟐,𝟎𝟎)

𝒚𝒚 = (𝟐𝟐,𝟐𝟐)

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦
• 𝑓𝑓 is 1-Lipschitz

A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz

A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0

A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0 , so it is not

possible to get ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≥ Ω(𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′)

A bad example

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• 𝑆𝑆 = 𝐶𝐶 ∪ 𝑥𝑥,𝑦𝑦 , 𝑇𝑇 = 𝐶𝐶 ∪ [𝑥𝑥,𝑦𝑦]
• 𝑓𝑓 is 1-Lipschitz
• 𝑑𝑑𝑢𝑢𝑢𝑢 > 0 for every pair of points 𝑢𝑢, 𝑣𝑣 ∈ 𝑇𝑇
• But the image of [𝑥𝑥,𝑦𝑦] intersects the circle, i.e., 𝑓𝑓𝒙 𝑢𝑢 − 𝑓𝑓𝒙 𝑣𝑣 = 0 , so it is not

possible to get ‖𝑓𝑓′ 𝑥𝑥′ − 𝑓𝑓′ 𝑦𝑦′ ‖ ≥ Ω(𝑑𝑑𝑢𝑢𝑢𝑢 𝑥𝑥′,𝑦𝑦′)
Outer extension

Relaxation I: Outer Extension

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

• Use additional coordinates in the image of the extended map

Lipschitz Outer-Extension
Given: a map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎, where

• 𝑆𝑆 ⊆ 𝑇𝑇 ⊂ ℝ𝒏𝒏

• 𝑓𝑓 is 𝐿𝐿 −Lipschitz ℝ𝒏𝒏

S ℝ𝒎𝒎𝑓𝑓

𝐿𝐿

Lipschitz Outer-Extension
Given: a map 𝒇𝒇:𝑺𝑺 → ℝ𝒎𝒎, where

• 𝑆𝑆 ⊆ 𝑇𝑇 ⊂ ℝ𝒏𝒏

• 𝑓𝑓 is 𝐿𝐿 −Lipschitz

Goal: a map 𝒇𝒇𝒙:𝑿𝑿 → ℝ𝒎𝒎′
, where

• 𝑚𝑚′ > 𝑚𝑚
• 𝑓𝑓′ is 𝐿𝐿𝒙 −Lipschitz

• 𝑓𝑓𝒙 is an (outer)-extension of 𝑓𝑓: for every 𝑥𝑥 ∈ 𝑆𝑆
𝑓𝑓′ 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 ⊕ 0, … , 0

ℝ𝒏𝒏

T ℝ𝒎𝒎′

S ℝ𝒎𝒎f’

𝐿𝐿

𝐿𝐿′

𝒎𝒎′ −𝒎𝒎

Relaxation II: increase the Lipschitz constant

Relaxation II: increase the Lipschitz constant

• If 𝑓𝑓𝒙 must have Lipschitz constant equal to 1, then 𝒎𝒎 should be
mapped to 𝒎𝒎𝒙

• the distances would decrease infinitely.

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

𝒎𝒎
𝒎𝒎𝒙

Relaxation II: increase the Lipschitz constant

• If 𝑓𝑓𝒙 must have Lipschitz constant equal to 1, then 𝒎𝒎 should be
mapped to 𝒎𝒎𝒙

• the distances would decrease infinitely.

 Instead find a 𝟏𝟏 + 𝝐𝝐 𝑳𝑳-extension 𝑓𝑓𝒙

𝒙𝒙

𝒚𝒚

𝒇𝒇(𝒙𝒙)
𝒇𝒇(𝒚𝒚)

𝑪𝑪 𝒇𝒇(𝑪𝑪)

𝒎𝒎
𝒎𝒎𝒙

Results: Two-sided Kirszbraun Theorem

Given:
• 𝑓𝑓: 𝑆𝑆 → ℝ𝑚𝑚 is 𝐿𝐿 −Lipschitz
• 𝑆𝑆 ⊂ 𝑇𝑇 ⊂ ℝ𝑛𝑛

Find: the extended map 𝑓𝑓′:𝑇𝑇 → ℝ𝑚𝑚 ⊕ℝΔ ≈ ℝ𝑚𝑚′ such that

• 𝑓𝑓′ is 1 + 𝜖𝜖 𝐿𝐿 −Lipschitz

• 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥ 𝑐𝑐 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇

• If |𝑇𝑇 ∖ 𝑆𝑆| is finite, then Δ = 𝑂𝑂(log |𝑇𝑇 ∖ 𝑆𝑆|).

• Otherwise Δ = ∞

Pros

 Least Possible contraction: for any pair simultaneously upto a factor
of 𝑂𝑂 𝜖𝜖 , i.e., Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]

Pros

 Least Possible contraction: for any pair simultaneously upto a factor
of 𝑂𝑂 𝜖𝜖 , i.e., Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]

 Easy to compute distances 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦
• Computing 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 in Kirszbraun theorem requires computing the

entire map itself, which can be done using SDP
• Here, we can just compute use 𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) as a good approximation

Pros

 Least Possible contraction: for any pair simultaneously upto a factor
of 𝑂𝑂 𝜖𝜖 , i.e., Bound 𝑓𝑓′ 𝑥𝑥 −𝑓𝑓′ 𝑦𝑦

𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦)
∈ [𝑐𝑐 𝜖𝜖, 1 + 𝜖𝜖]

 Easy to compute distances 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦
• Computing 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 in Kirszbraun theorem requires computing the

entire map itself, which can be done using SDP
• Here, we can just compute use 𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) as a good approximation

 Optimal Parameters (See next slide)

Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz

function 𝑓𝑓 s.t. for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to

decrease by a factor of 𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂(𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2)

Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz

function 𝑓𝑓 s.t. for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to

decrease by a factor of 𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂(𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2)

2. log |𝑇𝑇 ∖ 𝑆𝑆| dimensions is required for finite sets: for any 𝑚𝑚,𝑛𝑛,𝑁𝑁, there exists an

instance s.t. 𝑇𝑇 ∖ 𝑆𝑆 = 𝑁𝑁, and any outer Lipschitz extension with ‖

‖

𝑓𝑓′ 𝑥𝑥 −

𝑓𝑓′ 𝑦𝑦 ≥ 𝒄𝒄𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) requires 𝑚𝑚′ = 𝑐𝑐′ log𝑁𝑁 where 𝑐𝑐′ = 1/ log(𝐿𝐿
𝑐𝑐

+ 1)

Lower bound results

1. 𝜖𝜖 loss is required: There exists 𝑆𝑆 and 𝑇𝑇 = 𝑆𝑆 ∪ {𝑧𝑧1, 𝑧𝑧2} and a 1-Lipschitz function 𝑓𝑓 s.t.

for any 1 + 𝜖𝜖 -Lipschitz extension of 𝑓𝑓, their distance has to decrease by a factor of

𝜖𝜖, i.e., 𝑓𝑓′ 𝑧𝑧1 − 𝑓𝑓′ 𝑧𝑧2 ≤ 𝑂𝑂(𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢 𝑧𝑧1, 𝑧𝑧2)

2. log |𝑇𝑇 ∖ 𝑆𝑆| dimensions is required for finite sets: for any 𝑚𝑚,𝑛𝑛,𝑁𝑁, there exists an

instance s.t. 𝑇𝑇 ∖ 𝑆𝑆 = 𝑁𝑁, and any outer Lipschitz extension with 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥

𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) requires 𝑚𝑚′ = 𝑐𝑐′ log𝑁𝑁 where 𝑐𝑐′ = 1/ log(𝐿𝐿
𝑐𝑐

+ 1)

3. Infinite dimension is required for infinite sets: for any 𝑚𝑚,𝑛𝑛, there exists an instance

with infinite sets 𝑆𝑆 ⊂ 𝑇𝑇, s.t. any outer Lipschitz extension with 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥

𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) for some 𝑐𝑐, requires 𝑚𝑚′ = ∞

Application I: Bi-Lipschitz extension

• Our results immediately implies bi-Lipschitz extension of

[MMakarychevMakarychevRazenshteyn’18]

• 𝑂𝑂(𝐷𝐷) distortion

• Caveat: we don’t have 𝑚𝑚′ = 𝑚𝑚 + 𝑛𝑛,

• Pros: easy to compute distances approximately.

Application II: Updating Euclidean Metric

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑫𝑫𝑿𝑿𝑫𝑫𝒀𝒀)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐷𝐷𝑋𝑋 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐷𝐷𝑌𝑌 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑨𝑨𝑪𝑪)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐴𝐴 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐵𝐵 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Application II: Updating Euclidean Metric

• Dataset of objects 𝑿𝑿 with a metric 𝒅𝒅𝑿𝑿 resembling their similarity.

• We get additional information on a subset 𝒀𝒀 ⊂ 𝑋𝑋 of them and compute the new Euclidean
distance 𝒅𝒅𝒀𝒀

• Goal: Combine into a distance function 𝒅𝒅𝒄𝒄(𝒙𝒙,𝒚𝒚) = �𝑑𝑑𝑌𝑌 𝑥𝑥,𝑦𝑦 , 𝑥𝑥,𝑦𝑦 ∈ 𝑌𝑌
𝑑𝑑𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Not necessarily a metric; Compute shortest path on it be 𝒅𝒅𝒖𝒖
• We want 𝑑𝑑𝑢𝑢 to be Euclidean but it does not have to be

Theorem:

• Sufficient conditions for it: if 𝒅𝒅𝒀𝒀 𝒙𝒙,𝒚𝒚 ≤ 𝑪𝑪𝒅𝒅𝑿𝑿(𝒙𝒙,𝒀𝒀) for all 𝒙𝒙,𝒚𝒚 ∈ 𝒀𝒀, then the updated metric is
𝑶𝑶(𝑪𝑪𝑨𝑨𝑪𝑪)-Euclidean, where we assume 𝑑𝑑𝑥𝑥 is 𝐴𝐴 −Euclidean and 𝑑𝑑𝑦𝑦 is 𝐵𝐵 −Euclidean

• Lower bound: The above condition is necessary otherwise one gets at least Ω(log𝑁𝑁) distiortion

Plan

1. Background

• Extension of functions

2. Our results

• Two-sided Kirszbraun Theorem

3. Overview of the approach

Overall approach

• 𝒇𝒇′ 𝒙𝒙 = 𝒈𝒈′ 𝒙𝒙 ⊕ 𝒉𝒉′ 𝒙𝒙

Overall approach

• 𝒇𝒇′ 𝒙𝒙 = 𝒈𝒈′ 𝒙𝒙 ⊕ 𝒉𝒉′ 𝒙𝒙

1. 𝑔𝑔′ 𝑥𝑥 : Kirszbraun extension of 𝑓𝑓 𝑥𝑥 .
• Does not increase distances
• The same as 𝑓𝑓(𝑥𝑥) on the points in 𝑆𝑆

Overall approach

• 𝒇𝒇′ 𝒙𝒙 = 𝒈𝒈′ 𝒙𝒙 ⊕ 𝒉𝒉′ 𝒙𝒙

1. 𝑔𝑔′ 𝑥𝑥 : Kirszbraun extension of 𝑓𝑓 𝑥𝑥 .
• Does not increase distances
• The same as 𝑓𝑓(𝑥𝑥) on the points in 𝑆𝑆

2. 𝑜′ 𝑥𝑥 = 𝑐𝑐 𝜖𝜖𝐿𝐿 𝑜 𝑥𝑥 :
• 𝑜(𝑥𝑥) should be 0 when 𝑥𝑥 ∈ 𝑆𝑆
• Increases as a function of 𝑅𝑅𝑥𝑥 ≔ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥, 𝑆𝑆
• 𝑜 𝑥𝑥 − 𝑜 𝑦𝑦 ≈ Θ(min 𝑥𝑥 − 𝑦𝑦 ,𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑦𝑦)
• Use [Mendel&Naor’04] embedding (rescaled and truncated)

Construction of 𝑜

Two ingredients:
1. [Mendel&Naor’04]:

• For any 𝑜𝑜 > 0, there exists a map 𝜓𝜓𝑟𝑟 from ℓ2𝑛𝑛 to the infinite dimensional
sphere of radius 𝑜𝑜, such that it approximately preserve distances of value at
most 𝑜𝑜.

• 𝜓𝜓 𝑥𝑥 − 𝜓𝜓 𝑦𝑦 = Θ(min 𝑥𝑥 − 𝑦𝑦 , 2𝑜𝑜)

Construction of 𝑜

Two ingredients:
1. [Mendel&Naor’04]:

• For any 𝑜𝑜 > 0, there exists a map 𝜓𝜓𝑟𝑟 from ℓ2𝑛𝑛 to the infinite dimensional
sphere of radius 𝑜𝑜, such that it approximately preserves distances of value at
most 𝑜𝑜.

• 𝜓𝜓 𝑥𝑥 − 𝜓𝜓 𝑦𝑦 = Θ(min 𝑥𝑥 − 𝑦𝑦 , 2𝑜𝑜)

Set 𝒓𝒓 ≈ 𝑹𝑹𝒙𝒙

Construction of 𝑜

Two ingredients:
1. [Mendel&Naor’04]:

• For any 𝑜𝑜 > 0, there exists a map 𝜓𝜓𝑟𝑟 from ℓ2𝑛𝑛 to the infinite dimensional
sphere of radius 𝑜𝑜, such that it approximately preserves distances of value at
most 𝑜𝑜.

• 𝜓𝜓 𝑥𝑥 − 𝜓𝜓 𝑦𝑦 = Θ(min 𝑥𝑥 − 𝑦𝑦 , 2𝑜𝑜)

2. Bump Function:

Overall approach

• 𝑓𝑓′ 𝑥𝑥 = 𝑔𝑔′ 𝑥𝑥 ⊕ 𝑜′ 𝑥𝑥
1. 𝑔𝑔′ 𝑥𝑥 : Kirszbraun extension of 𝑓𝑓 𝑥𝑥 .

• Does not increase distances
• The same as 𝑓𝑓(𝑥𝑥) on the points in 𝑆𝑆

2. 𝑜′ 𝑥𝑥 = 𝑐𝑐 𝜖𝜖𝐿𝐿 𝑜 𝑥𝑥 :
• 𝑜(𝑥𝑥) should be 0 when 𝑥𝑥 ∈ 𝑆𝑆
• Increases as a function of 𝑅𝑅𝑥𝑥 ≔ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥, 𝑆𝑆
• 𝑜 𝑥𝑥 − 𝑜 𝑦𝑦 ≈ Θ(min 𝑥𝑥 − 𝑦𝑦 ,𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑦𝑦)
• Use [Mendel&Naor’04] embedding (rescaled and truncated)
• For finite set |𝑇𝑇 ∖ 𝑆𝑆|, we apply JL on top of 𝒉𝒉′ 𝒙𝒙 to get the desired bound on the

dimension

Summary

• Showed two sided variant of the Kirszbraun theorem
• It achieves asymptotically optimal parameters.
• Provides a simple approximate formula for computing distances
• Applications of our results to bi-Lip extension & Updating Euclidean metric.

Given:
• 𝑓𝑓: 𝑆𝑆 → ℝ𝑚𝑚 is 𝐿𝐿 −Lipschitz
• 𝑆𝑆 ⊂ 𝑇𝑇 ⊂ ℝ𝑛𝑛

Find: the extended map 𝑓𝑓′:𝑇𝑇 → ℝ𝑚𝑚 ⊕ℝΔ ≈ ℝ𝑚𝑚′
 such that

• 𝑓𝑓′ is 1 + 𝜖𝜖 𝐿𝐿 −Lipschitz
• 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥ 𝑐𝑐 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇
• If |𝑇𝑇 ∖ 𝑆𝑆| is finite, then Δ = 𝑂𝑂(log |𝑇𝑇 ∖ 𝑆𝑆|).
• Otherwise Δ = ∞

Summary

• Showed two sided variant of the Kirszbraun theorem
• It achieves asymptotically optimal parameters.
• Provides a simple approximate formula for computing distances
• Applications of our results to Updating Euclidean metric.

Given:
• 𝑓𝑓: 𝑆𝑆 → ℝ𝑚𝑚 is 𝐿𝐿 −Lipschitz
• 𝑆𝑆 ⊂ 𝑇𝑇 ⊂ ℝ𝑛𝑛

Find: the extended map 𝑓𝑓′:𝑇𝑇 → ℝ𝑚𝑚 ⊕ℝΔ ≈ ℝ𝑚𝑚′
 such that

• 𝑓𝑓′ is 1 + 𝜖𝜖 𝐿𝐿 −Lipschitz
• 𝑓𝑓′ 𝑥𝑥 − 𝑓𝑓′ 𝑦𝑦 ≥ 𝑐𝑐 𝜖𝜖𝑑𝑑𝑢𝑢𝑢𝑢(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇
• If |𝑇𝑇 ∖ 𝑆𝑆| is finite, then Δ = 𝑂𝑂(log |𝑇𝑇 ∖ 𝑆𝑆|).
• Otherwise Δ = ∞

	Two-sided Kirszbraun Theorem
	Plan
	Extension of Functions
	Extension of Functions
	Extension of Functions
	Extension of Functions
	Extension of Functions
	Lipschitz Extension
	Lipschitz Extension
	Lipschitz Extension
	Kirszbraun Extension Theorem
	Kirszbraun Extension Theorem
	𝑓′ can decrease distances arbitrarily
	𝑓′ can decrease distances arbitrarily
	𝑓′ can decrease distances arbitrarily
	𝑓′ can decrease distances arbitrarily
	𝑓′ can decrease distances arbitrarily
	Two-Sided Kirszbraun Theorem
	Two-Sided Kirszbraun Theorem
	Two-Sided Kirszbraun Theorem
	Two-Sided Kirszbraun Theorem
	Plan
	Results in a nutshell
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	What is necessary? An upper bound
	A bad example
	A bad example
	A bad example
	A bad example
	A bad example
	A bad example
	Relaxation I: Outer Extension
	Lipschitz Outer-Extension
	Lipschitz Outer-Extension
	Relaxation II: increase the Lipschitz constant
	Relaxation II: increase the Lipschitz constant
	Relaxation II: increase the Lipschitz constant
	Results: Two-sided Kirszbraun Theorem
	Pros
	Pros
	Pros
	Lower bound results
	Lower bound results
	Lower bound results
	Application I: Bi-Lipschitz extension
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Application II: Updating Euclidean Metric
	Plan
	Overall approach
	Overall approach
	Overall approach
	Construction of ℎ
	Construction of ℎ
	Construction of ℎ
	Overall approach
	Summary
	Summary

